
v 

41 

c. 

«JT' 

NOTE  ON  A   NEW  COMPUTATIONAL  DATA  SMOOTHING  PROCEDURE 

SUGGESTED  BY  MINIMUM MEAN  SQUARE  ERROR  ESTIMATION 

P.   Swcrling 

May,    1965 

^ 3' 
^] 

/ s    c> 

r , rr c> 

/ {■ 0 

DDC 

D JUN 14 1965 

DDC-IRA    E 

P-3151 

/ ■ 

Approv ,,j for  OTS rel J ise 

mmm %m 



NOTE ON A NEW COMPUTATIONAL DATA SMOOTHING PROCEDURK 

SUGGESTED BY MINIMUM MEAN SQUARE ERROR ESTIMATION 

P. Swerllng 

ConsulLanL to The RAND Corporation, Santa Monica, California 

INTRODUCnON 

Reference 1 contains a discussion of some possible computational 

procedures for finding the exact niinimuni mean square error (MMSE) 

estimates of parameters in the case where the observations depend non- 

linear ly on the unknown parameters.  The procedures analyzed there are 

for the case where the observation noise is Gaussian and additive. 

It was pointed out in that paper that the applicability of such 

estimation procedures, that is, those that would yield MMSE estimates 

if the noise were Gaussian and additive, is not necessarily limited 

to cases where the noise is actually Gaussian or additive.  An analogy 

was made to least squares procedures, which would be maximum likelihood 

if the noise were additive and Gaussian, but whose applicability is 

not restricted to such cases (although if these conditions are not 

satisfied one can no longer necessarily make the same claims regarding 

optimali ty ) . 

Any views expressed in this paper are those of the author.  They 
should not be Interpreted as reflecting the views of The RAND Corporation 
or the official opinion or policy of any of its governmental or private 
research sponsors.  Papers are reproduced by The RAND Corporation as a 
courtesy to members of its staff. 



In contrast to least squares procedures, the MMSE procedures 

achieve exact (not merely asymptotic) minimum mean square estimation 

error even when the observational data depend non-linearly on the 

unknown parameters. 

Also, the computational procedures are quite different.  In the 

least squares procedures, not only is the optimality criterion the 

minimization of the statistically expected square of the error, but 

the computational procedure involves minimizing, with respect to the 

parameters, a function of both the observed data and the parameters; 

and this function is a weighted sum of squares, or more generally 

a positive quadratic form, in the residuals. 

In contrast, while the optimality criterion for the MMSE pro- 

cedures is still the minimization of the statistically expected 

square error, the computational procedures do not necessarily involve 

the minimization of a function of observed data and parameters; rather, 

they involve the evaluation of certain integrals over the parameter 

space.  Although the computational implementation of MMSE estimation 

is often very difficult, there may be cases in which the evaluation of 

the necessary integrals is more convenient, even from the computational 

point of view, than the minimization required in least squares pro- 

cedures . 

In the "strong signal" case the least squares procedure can be 

linearized; that is, the functional dependence of the observed data 

on the unknown parameters can be treated as linear within some region 

surrounding the true parameter values, and other regions of the para- 
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meter space can he effectively ignored. In such cases, the estimates 

obtained are asymptotically the same as those obtained from MMSE pru- 

cedures. 

More generally, if the logaritlim of the likelihood function is 

convex in the unknown parameters in a region surrounding the true 

values, for sufficiently strong signal everything other than this 

region may be ignored, and iterative techniques may be applied to find 

the least squares estimate. 

The purpose of this note (following a suggestion made in Ref. 1) 

is to investigate the form taken by MMSE estimation procedures in the 

case where the dependence of the observed data on the parameters can, 

with good approximation, be considered to contain only constant, 

linear, and quadratic terms.  The resulting procedures can be con- 

sidered as alternatives to the iterative procedures used in least 

squares. 



II.     MUSE  ESTIMATES  WITH ADDITIVE   GAUSSIAN NOISE 

It  is  assumed   that   the  observed  data  can be   represented   in   the 

form 

S(t)   =  fCx.,    ...,   x   ,   t)  + e(t) (1) 
i n 

where t is a time parameter (actually, it need only be assumed that 

t is a parameter whose value is k.nown--it need not be interpreted 

as time, but it is convenient to speak of it in this way); 

x-, ..., x are n real, unknown parameters; and [£(t)] is the observa- 

tion iiror. 

We will write 

x = (xj, ..., x^) (2) 

x e X 

where X is a parameter set, and n is the number of unknown real 

parameters. 

The parameter vector x is assumed to have an a-priori proba- 

bility density function p(x) over X. 

Also, it will be assumed initially for purposes of derivation 

that the observed data consist of samples of S(t) at a number N of 

discrete time points -It j-, p, = 1, . . . , N, so that the observed data 

are 

S . S(t ) - f(x, t ) + e(t ), p, = 1, ..., N (3) 
p,     p, p,      p. 

Eventually, however, the results will also be obtained, by a limiting 

process, for cases where the function S(t) is continuously observed 

over some interval. 



Suppose the set of random variables [£ ] arc Gaussian, have zero 
u 

means, and have covariance matrix 

£  £  = cp  = cp(t , t ) CA^ 

where ^(s, t) = e(s) e(t) (5) 

Then, the joint probability density of [s ], conditional on the 

parameters having given values, is 

-N N 

p(S | x) = (2n) 2 A'^ exp {-%    )   Tl , [S - f(x, t )][S  - f(x, t ) ])  (6) 

p,,U=l 

wh ere 

s = (s^ ..., sN) 

(7) 
x = (x , • • • , X ) 

i       n 

A = det 1 cp | 

If the a-priori probability density of x over X is p(x), tuen 

the joint p.d.f. of S and x is 

p(S, x) = p(S | x) p(x) (8) 

with p(s| x) given by Eq. (6).  (These various density function? do 

not necessarily have the same functional form, even though the symbol 

p is used in each case; ambiguity is removed by noting the argument 

of p.) 

Let 0(x) = ßCx.., . . • , x ) be any real-valued function of 

x,. ..., x having finite second moment with respect to p(x). In 



Then, the MMSE estimate of pCx), denoted by g, is that function 

of S which minimizes 

I [F(S) - 3(x)]  p(S, x) dS dx 

D X 

for all functions F(S) of S.  Here, Cl   is the set consisting of the 

possible values of the vector S. 

It is then easy to show that the MMSE estimate B is 

ß(x)   p(x)   exp  [-k A(x)  + u(x)}   dx 

i   p(x)   exp   [-if A(x)  + u(x)]   dx 

where N 

A( x) - Y ii   f(x, t ) f(x, t : 

N 

u(x)   =    V      T]       f(x,   t   )   S(t   ) 

If the observational data consists of the function S(t) observed 

continuously over an interval (T., T9), then P is given by Eq. (9) 

hut with A(x) and u(x) in Eqs. (10) and (11) replaced by their limit- 

ing values as N -• oo and as the points [t ] become dense in (T , T ). 

Methods of evaluating such limits are discussed at length in 

Refs. (2) - (4).  It might be noted that A(x) is essentially a kind 

of signal-to-noise ratio appropriate to noise having the covariance 

function ^(s,   t), while u (x) is a linear operation on the received 

signal which is equivalent to that generalization of cross-correlation 

which is appropriate to noise having the covariance function m(s,   t) . 

(9) 

(10) 

(11) 



In   fact,   in   the white-noise  case,   in   the   limit 

T 
2 

A(x)   =    jf \        f2(x,   t)   dt 
0h 

{12) 

u(x)   =    —   i        f(x,   t)   S(t)   dt 

0'Ti 

(13) 

where N = one-sided noise spectral density, 
o 

Now, we will consider the expansion of both u(x) and A(x) through 

second order in [x. ].  In essence, we will expand f(x, t) through 

second order in [x ] for purposes of approximating u(x).  However, in 

approximating A(x), the full expansion of f(x, t) to second order 

will not be used; rather, A(x) will itself be expanded through at 

most second order. 

This can be expected to yield very accurate approximations to 

A(x) in many cases of interest, since there are many such cases in 

which A(x) is either independent of x or depends on x in a way which 

car be well approximated by retaining only terms through quadratic. 

Thus, suppose x = (>• , ..., x ) is some definite value of x and 

that in the neighborhood of x 

n 

f(x, t) = f(x, t) + ^ df^? ^ (xi - x^ (14) 

i=l 

Y  52f(xt t) 
'    L   ax. OX,    ui 

i,j=i    1    j 

xi)(x  - x ) 



A(x) = A(x) + )' ^^ (x, 
Z_,  ox.    ] 

i = l 

x.) 
1 

(15) 

2 - 
+ ^ )  T ^ (x. - x.)(x. - x.) Z_  ax. dx.    i   i   j    j 

...   i   i 

It may be noted that the derivatives of A(x) can easily be 

evaluated in terms of those of f(x, t) via Eq. (12), in Lhe white 

noise case, or more generally via Eq. (10). 

For notational convenience, let 

L'   ^ s di(x' L) 
i 

(16) 

ä f(x, t)      ,-  , 
. M  / = e. . (x, t) 
dx. dx.     ij 

i   J 
(17) 

aJ 
/ - a ix) ox.     1 

i 

(18) 

^2A(x)   , r. 
x V^ - b. . (x) dx  dx     ij 

Then, 

A(x) = A(x) + ^ a
i(xi - x.) + ^  ^  ^j^i 

1=1 t.j-1 
n n 

u(x) = u(x) + ^ V*! - x^ + if  ^  zij(xi 

i=l i,j=l 

Xi^ ^X1 " Xi') 

x.Hx. - Xj) 

(19) 

(20) 

(21) 



N 

where u(x) = ffx, t ) S(t ) 
M.     U 

N 

v  =   )'  T]  d (x, t: ) S(t ) 
i    Z_   u.; i    u    u 

N 

z,  =    )   Tl   e. .(x, t ) S(t ) 

or the limiting values of these as [t j becomes dense in (T , T ) 

For the white noise case, the limiting values become 

rT2 
u(x) = |- J   f(x, t) S(t) dt 

0 Tl 

(22) 

(23) 

(24) 

(25) 

Vi = N" 
d. (x, t) S(t) dt 

1 

Zij " N J 
T 

e. . (x, t) S(t) dt 

(26) 

(27) 

Now make the further assumption that 

-n 

p(x) = (2TT)    T " exp ) -^  x   Yli(xi " xi)(xj " x^f (28) 

where 

F = det j Y 

In other words, x. are now taken to be the a-priori means of x , 

and the a-priori joint distribution of the parameters is taken to be 

Gaussian. 
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Wc   then  have 

[ß(x)exp|-^      V       :. .(x.    -   x.)(x. -   x   )   +    /     C.(x     -x)ldx (29) 

0 =   X i,j=l i=l 

n n 

I  ^pj-^   i   5ij(xi " ^i)(xj " ^j) + I qcx.-x^ldx 
X ^        i,j=l ' i=l ^ 

where 

5. .   = v. .   + ^   b. ,   -   ^   z. . (30) 

^   =  -^  a.   + v. (31) 
i ii 

In Eqs.   (30)  and   (31),  v.   and   z..   are   linear  functions   of   the 

observed  data  S(t). 

Now, 

where n 

Thus 

[ß(x)expj-%      y      5ij(xi   -  xi)(x
j   " ^j)| dx 

-h      I      ^U.   -x1)(xj   -Xj)} 
i,j=l J 

dx 

(32) 

(33) 

ß  =   ^ jlj   1 (34) 
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Now let us further suppose that (c,. .) is a positive matrix. 

Then we can write 

ß = E[0(x); t\  x] (35) 

where E Lß(x); ^; x] is the expected value of 0(x) with respect to a 

joint Gaussian distribution of (x.. , •••, x ) having means x. and 

inverse covariance matrix {%,,.)• 
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111.     VARIOUS   SPECIAL CASES 

First,   suppose   that   p(x)   is   a   function  of   only   one   of   the   com- 

ponents,   say 

(3(x)   =  g(x.^ (36) 

Then, clearly, 

B = g = 
1 

(x. - x V 

-1,  ^ 
ii 2n [(§").. r  "-    ' 

g(x ) exp ) -\ 

(?"■) 
dx, 

11 

(37) 

In particular, setting B(x) = x,, then 

x , = x . 
i    i 

(38) 

If we set 0(x) = x", then 
i 

2—2    -1 
(39) 

Similarly, the MMSE estimate of any power of x. can be ex- 

pressed as a function of x. and (§  ).,■ 
ii 

Next, suppose that we set 

fUx) = x. x . (40) 

for any particular i and j. 

Tli en 

.-1. 
X. x.=x. x.+(§  ).. 

1   1       1   J 1J 
(41) 
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By well-known   formulas,   the  MMSE  estimate  of  any   function  of 

the   form 

k 
ß(x)   = Tf   (xJ   ' (^2) 

i = l       1 

can be determined as a function of x,, i = 1, ..., n, and (^  )-i> 

i,j = 1, .... n. 

In the foregoing formulas, x. is given by Eq. (33). 
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iV.  ADDITIONAL REMARKS ON THE COMPUTATIONAL IMPLICATIONS 

It has previously been mentioned that the procedure which has 

been described is not necessarily limited in applicability to cases 

where the statistical conditions are satisfied such that the resulting 

estimates are really MMSE, any more than least squares procedures are 

limited to cases where they are ".eally maximum likelihood. 

Within reasonable limits, one may regard the procedure defined 

by the foregoing equations as generally applicable, even if the noise 

[£(t)] and the a-priori parameter distribution are not really Guassian. 

Moreover, one can use the white noise formulas for v., z,., etc., even 

if the errors [£(t)} are really correlated.  Within reasonable limits, 

one can regard the matrices T\      and \, , as arbitrary choices of the 
^      ^ J 

designer of the computation procedure.  Naturally, the statistical 

quality of the resulting estimates will be best if these represent 

the "true" inverse covariance matrices of the noise errors and the 

a-priori estimates, respectively; but it is in many cases desirable 

to trade statistical quality for computational convenience. 

The procedure stated above can also be used as a step in an 

iterative procedure, in the following way.  We can regard the quanti- 

ties x. as the initial estimates in the iterative procedure, 
i 

Then, we can obtain x. by means of Eqs. (38) and (33).  Then, 

x. can be used in place of x. in precisely the same procedure--!. e. , 

A,   

with v., z.., a,, b.. evaluated at x. instead of x..  This would 
i  ij  i  ij i i 

produce another estimate (with the same observational data) which 
/ 

might be denoted (x ) .  The procedure would then continue until the 

estimate settled. 
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